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The Design of Coupled Microstrip Lines

SINA AKHTARZAD, THOMAS R. ROWBOTHAM, axp PETER B. JOHNS

Abstract—Although graphical results and formulas are available
for the design of microstrip couplers, the design procedure is ham-
pered because even-~ and odd-mode impedances are always ex-
pressed in terms of the physical geometry. In practice the designer
obtains these impedances and then requires to know the geometry
given by them.

A new design procedure for coupled parallel microstrip lines is
therefore presented. The technique enables the geometry of the
coupled lines to be obtained directly from the required even- and
odd-mode impedances and uses single microstrip-line geometry as
an intermediate step. The results are presented in graphical form
using only two universal families of curves. Results are also pre-
sented in the form of simple formulas for design programs and also
comparisons with practical results are made.

I. NOMENCLATURE

Zoe,Zoo Even- and odd-mode characteristic
impedance of the coupled micro-
strip lines.

Zo Characteristic impedance of the
equivalent single microstrip line.
Shape ratio (width-to-substrate
thickness and gap between lines to
substrate thickness) for the coupled
microstrip lines.

Shape ratio for the equivalent
single line—general case, corre-
sponding to even-mode geometry,
corresponding to odd-mode geom-
etry.

€ Substrate relative permittivity.

W/H,S/H

(W/H)s,(W/H) s,
(W/H) s

II. INTRODUCTION

HE DESIGN of parallel-line microstrip couplers and
filters requires a relationship between the geometry of
the device (see Fig. 1) and the even- and odd-mode char-
acteristic impedances (Z;, and Zy,). Curves are available
[1], [2]for Zy, and Z,, plotted against W/H amd S/H and
design procedure requires a search for those particular
W/H and S/H values which simultaneously yield Z,, and
Zg. Interpolation between different sets of curves for
different substrate permittivities is also required. These
curves may be generated using formulas which are now
available [ 37, but these tend to be quite lengthy and do not
lend themselves to easy simultaneous solution.
This paper deseribes a procedure whereby the designer
can caleulate W/H and S/H from desired values of Z,
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The geometry of coupled microstrip lines.

Fig. 1.

and Zo, either using just two universal graphs or with the
aid of a computer. In both cases there are two steps. One
of these uses the well-known relationship for the charac-
teristic impedance of a single line in terms of its shape ratio
(W/H),. The other step to be described relates W/H and
S/H (for the coupled lines) to (W/H), (the intermediate
single-line geometry). The latter results may be made
independent of the permittivity and are given not only in
graphical form but also as simple formulas.

II1. DESIGN PROCEDURES

A. Synthesis

In the synthesis procedure, Zo. and Zo, for the coupled
lines are known and it is required to find W/H and S/H.
The first step is to find the two single-line shape ratios
(W/H),, and (W/H),, eorresponding to the impedance
Zo/2 and Z,,/2, respectively. Wheeler’s theory [4] pro-
vides curves, reproduced in Fig. 2, for obtaining these
shape ratios graphically or alternatively, Wheeler’s syn-
thesis formula may be used

(W/H)s = (2/7)(d — 1) — (2/7) log. (2d — 1)

r ]- R 17
+ =1 <loge (d — 1) + 0.203 — 95 > (1)
TEy €
where
6072
= Z0(€r>1l2 )

The values of (W/H), used in this technique are always
large enough for the curves of Fig. 2 or (1) to apply with
good accuracy.

W/H and 8/H for the coupled lines are now found by
simultaneous solution of the following formulas:

*

- —1 L_Hl
(W/H)., = (2/x) cosh ( 4 ) 2)
o f2h—g—1
(W8 = (2/s) costs (2L21)
N7/
+mcosh (1+2 S/H)’
<6 (3)
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Fig. 2. Single microstrip line characteristic impedance [4].

(W/H)so = (2/7l') cosh—! (_2_’_L___g—_:I->

g—1
W/H
—1 e
+ (1/7) cosh (1—|—2 S/H)’ &> 6
where
g = cosh [2x(S/H)]
and

h = cosh [#(W/H) + 3=(S/H)].

Equations (2) and (3) are given in graphical form in Fig.
3 where the curves are plotted for a fixed value of per-
mittivity ¢, = 6. The relationship to a single microstrip
line cannot be made independent of the permittivity, but
the formula with ¢, = 6 gives accurate results for sub-
strates with permittivity ¢, = 6 and above. For permittivi-

Zy

487

Odd -mode
Even-mode ———

——
———
———

SIH
Fig. 3. Synthesis curves for coupled mierostrip lines.

Zy,. Here the first step is to find the two single-line shape
ratios (S/H), and (W/H),, corresponding to W/H and
S/H for the even and odd modes, respectively. These are
obtained from (2) and (3) or from Fig. 4 which is again
plotted for ¢, = 6 (see Section ITI-A). The characteristic
impedances (Z,) for a single strip corresponding to the
shape ratios (W/H),, and (W/H),, are now required.
These may be obtained from Fig. 2 or alternatively, the
corresponding analysis formula may be used

1207 (1/e,)112

ties down to ¢ = 2, the formula for ¢ = 6 (plotted in
Fig. 3) has errors up to about 10 percent for the worst
S/H and W/H values. For greater accuracy at low per-
mittivities and certainly for values of permittivity less
than ¢, = 2 the equation for ¢ < 6 should be used, and
in this case it will be noticed that e, appears as a variable.

The solution of simultaneous equations (2) and (3) is
greatly eased by ignoring the second term in (3). A value
of S/H is then given directly by

S/H = (2/x)cosh™!

) {cosh (3r (W/H)..] + cosh 3r (W/H)w] — 2} @
cosh [1m(W/H)s | — cosh [3n(W/H,.]

Substitution into (2) and (3) of the values obtained
from (4) will show that in most cases (4) is sufficiently
accurate. If this substitution is not sufficiently accurate
(and this may happen, particularly at lower values of
permittivity) then (4) provides a useful starting point
for an optimization process in the solution of (2) and (3).

B. Analysts

In the analysis procedure, W/H and S/H for the
coupled lines are known and it is required to find Z,, and

" (W/H), + 0.882 + [ (e + 1) /ze.){log, (W/H), + 1.88) + 0.758} + [(e& — 1)/e](0.164) °

Alternative formulas for this result are given in [57].
The even- and odd-mode impedances are then given by

Zoe = 2Zy (for shape ratio (W/H),.)

Zy = 27, (for shape ratio (W/H),,).

C. Wave Velocity

The phase velocity for waves on a structure with even-
mode excitation will be different from the velocity on a
structure with odd-mode excitation. In practical design
procedure it is usual to take the mean value of these two
velocities.

The even-mode velocity (v) may be obtained from the
single-line equivalent characteristic impedance for even
mode (Z,) using the following formula:

Zy
(Zo) ¢,=1

v_
o=
where ¢ and (Z,) -1 are the phase velocity and charac-
teristic impedance in the same equivalent structure, but

with substrate permittivity equal to free space (e, = 1).
A similar caleulation gives the odd-mode velocity.
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Fig. 4. Design curves for coupled microstrip lines.

IV. DERIVATION OF RESULTS

A. Conformal Mapping

Equations (2) and (3) or Fig. 4 give the width of a
single microstrip line which would have the same char-
acteristic impedance between line and gound as the two
separate lines in the coupled-line configuration. The single
microstrip line is used as an intermediate step in the cal-
culation because the field fringing effects at the edges of
the single microstrip line are very similar to the fringing
effects on the outside edges of the coupled lines. By taking
the single-line equivalent, therefore, the inductance and
capacitance effects (both in air and dielectric) of the
outside edges of the coupled lines are properly accounted
for.

The additional complication in the coupled-line geom-
etry is the field fringing in the region of the gap between
the lines (the inside edges). It is assumed initially that
this fringing field in the gap lies totally in the dielectrie.
This assumption is attractive for the following two
Teasons.

1) The calculation of the geometry of the single-line
equivalent of the coupled lines may be made independent
of the permittivity of the dielectric. In other words, the
only inhomogeneous part of the problem lies at the outside
edges of the coupled lines and this is properly accounted
for when using the published solution for the single-line
geometry (these are not independent of permittivity, of
course).

2) The calculation procedure can be performed using a
simple conformal mapping procedure which maps only the
dielectrie region of the coupled-line geometry in the z plane
to the w plane. Adjustments are made only to those regions
in the w plane which involve the gap and then the geometry
is transformed back to the z plane. Thus there is no harm
in placing an open-circuit boundary along the face of the
dielectric for transformation purposes provided the prob-
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lem finally returns to the original z plane where the bound-
ary condition can be removed again. Since the caleulations
concerning the gap are performed under homogeneous con-
ditions, it is necessary only to discuss the capacitance
effects; the inductance effects will automatically be correct.

In the even-mode case it will be shown that the assump-
tion that the fields lie totally in the dielectric is quite
reasonable. In the odd-mode case, however, errors arise
from this assumption and the formulas are then adjusted
taking due regard of the inhomogeneous nature of the
problem.

It is required to map the degenerate triangle in the 2z
plane shown in Fig. 5(a) into the upper half of the w
plane shown in Fig. 5(b). This is accomplished by the
Schwarz—Christoffel transformation which for the general
case of a polygon may be expressed as [6]

A / (0 — bo)=0"(w — by) e odw.  (5)
The angle at z = j is zero and the remaining two angles
at 2 = —n/2 and 2z = +=/2 are each »/2. Placing b, at
w= —1and by at w = +1, (5) becomes

dw
2 = ZO+A/'———(w2 — 1)1/2

20 + A cosh—t w.

Now when

z=w/2 then w= 41 and 2z = 7/2.

Also when
2= —7/2 then w=—1 and A = —j.
Thus the required transformation is

w = sin 2.

(6)
B. Even-Mode Geometry

Fig. 6(a) shows the coupled-line even-mode geometry.
The potential is constant along the full lines, and the
normal gradient of the potential is taken as zero along the
broken lines. This neglects any fringing field in the air at
A, an approximation which will be discussed later. The
transformation (6) into the w plane is shown in Fig. 6(b).
The exercise of scaling into the w’ plane now requires the
positive half of the w’ plane to remain unchanged while
the gap AF is reduced to zero.

If

—g = sin [—37 + j(37) (S/H) ]

z=sn’w

y:oosn'1u

BN7 777/

-1 0 1 u=gosh y

w=35In z

Y, O Ty

Fig. 5. Schwarz—Christoffel trslmsformation. (a) z plane. (b) w
plane.
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Fig. 6. Transformations for even-mode geometry. (a) z plane. (b)
w plane. (¢) w’ plane. (d) 2 plane,

ie.,
g = cosh [37(S/H)]
then the required scaling transform, shown in Fig. 6(e¢), is

w,=2w+g—1
g+1

since, for w = 1, w’ = 1, and forw = —g, v’ = —1.
Fig. 6(d) shows the transformation back to the z plane.
For ‘

h = coshfn(W/H) + 3= (S/H)]
the required width of the strip (W/H),, is given by

_<2h—g+1

1 > =sin [—3r + j(3m) (W/H).l (7)

which gives (2).

The physical interpretation of this result ecan be seen
with the aid of Fig. 6(a). The total capacitance is made up
of the parallel-plate capacitance 4 B to ground, the fringing
capacitance at B (which is constant over a large range of
W/H and S/H), and the fringing capacitance at A (which
varies considerably with S/H). A single line has fringing
capacitance only at B. Therefore, a single line which has
the same capacitance as the pair of eoupled lines must be
wider than 2(W/H) by an amount which takes account
of the fringing capacitance at A. This factor varies con-
siderably with S/H when S/H is small but settles to a con-
stant value when S/H becomes large enough for the fring-
ing field to be unaffected by the adjacent line. Thus the
even-mode section of Fig. 4 shows that (2) approximates
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to parallel straight lines of slope 2 for most of the W/H
range.
For S/H = 0, (2) becomes

(W/H)se = 2(W/H)

which is expected since the fringing field at A has reduced
to zero.
For S/H — « and writing

(W/H)se = m(W/H) + k
(2) approximates to
cosh [m (3m) (W/H) + k(37)]

= 2[cosh #(W/H) + sinh «(W/H)] — 1.
For large W/H this gives

_ 2log. 4

T

k = 0.88.

This is the constant increase in W/H which accounts for
the fringing field at 4 for very large S/H. It is under these
conditions of large S/H that maximum error will occur
due to neglecting the fringing field in the air at A. [Note
that the fringing field at B is always properly accounted
for when using (1)]. A comparison with the results of
[1] and [2] and direct comparison with the edge-effect
results of [77] shows that neglecting the fringing field in
the air produces negligible error.

C. Odd-Mode Geometry

In the first instance the procedure for the odd mode is
similar to that used in the even mode. Referring to Fig. 7,
it can be seen that the scaling transform this time is given

qTrn
3% (S/H+2 WIH)

2

A

(@)
Fig. 7. Transformations for odd-mode geometry. (a) z plane. (b)
w plane. (¢) w’ plane. (d) z plane.
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by
w =2 tetl
g—1
since this time for w = —1, w’ = 1, and for w = —y,
w = —1.

Transferring back to the z plane, the width (W/H),,
is given by

_<2h—g——1

g—1 ) =sin[—3r +jG7) (W/H)w] (8)

which gives the first term of (3).

Again, that part of the fringing field at A which is in
the air has been neglected and, whereas this did not affect
the accuracy in the even-mode case, larger errors can
occur in the odd-mode case. The inaccuracies are most
pronounced when S/H is small and where the substrate
relative permittivity is near unity. In order to account for
this extra fringing field, the width of an equivalent single
line must be increased over and above that given by (8).
It is required therefore to find the width of the parallel-
plate capacitor, distance H between the plates, which has
the same capacitance as that caused by the fringing field
in the air at A. This capacitor, when inserted into the
middle of the single equivalent strip, will increase the
width by the correct amount.

The geometry of the problem is shown in Fig. 8, this
time in the w plane where the capacitance of one of the
lines to ground is twice the capacitance between the pair
of lines shown. The scaling transform to the w' plane is
now given by

w =wX (2/8).
This gives in the z plane

(1 +2(W/8)] = sin [37 + j(3m) (W/H) ]

7 /z//xéJrM/é//

_5+2wW S+2w
2 2

(a)
whgde g
()

(O]

Fig. 8. Transformations for addltlonal capacitances in odd mode,
(a) w plane. (b) »’ plane. (c) z plane.
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ie.,

/1) = (472 oo (142 ),

S/H

This equation is an approximation since the capacitor in
Fig. 8(c) has a fringing field at BD, whereas the required
capacitor does not. Also, since this capacitance is in air,
it cannot be added directly onto the first term of (3). A
way in which this term may be added has been found by
empirical means by comparing the results with [1] and
[2] and also by comparing with practical results.

In practice it is found that the influence of the second
term in (3) is not highly dependent on ¢, and a choice of
e, = 6 gives accurate results over a wide range of sub-
strate permittivities. This bonus feature is very useful
because it allows the curves in Figs. 3 and 4 to be con-
structed independently of the substrate permittivity.

From a physical point of view in the odd-mode case,
when S/H — « the coupled lines look like separate
single lines and (3) becomes the same as (2). As S/H — 0
the odd-mode impedances reduce towards zero requiring
a single-line equivalent width tending to infinity.

V. COMPARISON WITH PRACTICAL AND
THEORETICAL RESULTS

A number of couplers have been fabricated on 1.5-mm-
thick alumina (e, = 9.6). The coupled section of each
coupler is one quarter-wavelength long at about 1.8 GHz.
Straight 50-Q connecting lines join the coupled section to
microstrip-to-coaxial line transitions at the edge of the
50-mm X 50-mm substrate. Considerable effort has been
expended on minimizing the discontinuities at the transi-
tions and at the junction between the coupler and the
50-Q lines. The maximum reflection coefficient for a com-
bination of junction and transition is 0.06.

Meagurements of even- and odd-mode impedaneces were
made using the slotted-line technique described by Napoli
and Hughes [8]. This slotted-line procedure consists of
exciting the even and odd mode independently by means
of equal-amplitude dual inputs to one end of the coupler,
while terminating the other end in the output-line im-
pedance of the eoupler (50 Q). The equal-amplitude inputs
arein phase when exciting the even mode, and out of phase
when exciting the odd mode. A slotted line was placed in
one input line between the source and the coupler being
measured. The voltage standing-wave ratio (VSWR) was
found, and the input characteristic impedance calculated.
The measurement was performed at the frequency at
which the length of the coupled section is a quarter-wave-
length at the modal phase velocity. This facilitates cal-
culation of the modal impedance. From consideration of
discontinuity effects, the measurement accuracy is esti-
mated as 43 percent.

The practical results are shown in Fig. 9, where a com-
parison is made with theoretical results obtained from the
analysis procedure of Section ITI-B. The parameters used
for the theoretical analysis were taken from measurements
made on the couplers under test.
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Fig. 9. Comparison of practical and theoretical results. Practical
results: O S/H = 0.1; O = 0.2; [0 = 0.5; A = 1.0. Theoretical

results: —.

TABLE 1
CoMPARISON OF THEORETICAL RESULTS ¢, = 9.6

N . BRYANT AND WEISS
DIIENSIONS (REFERENCE 1)
S/H W/H EVEN QoDD
0.1 0.1 164.1 55.4
0.1 0.5 96.2 34.5
0.1 1.0 66.5 27.8
0.1 2.0 41.7 21.6
0.2 0.1 156.0 66.1
0.2 0.5 92.2 39.9
0.2 1.0 64.5 31.6
0.2 2.0 41.0 23.7
Q0.5 0.1 138.4 83.5
0.5 0.5 84.5 49.7
0.5 1.c 60.5 38.1
0.5 2.0 39.4 27.4
1.0 0.1 126.0 96.6
1.0 0.5 77.4 57.7
1.0 1.0 56.5 43.2
1.0 2.0 37.6 30.1

JUDD ET AL.
(REFERENCE 2) THIS METHOD
EVEN opd EVEN ODD
156.7 | 48.0 | 141.7} 53.8
93.3 | 32.3 92.11] 35.2
64.8 | 26.6 65.01 29.0
40.8 | 20.7 41.31 22.7
146.5 | 58.2 | 136.0] 64.6
90.0 | 38.5 89.0, 41.1
63.0 | 31.5 63.41 33.1
40.1 | 23.0 40.71 25.1
128.1 74.5 125.2 80.9
81.9 | 48.0 82.2] 50.8
59.0 | 37.1 59.7! 39.5
38.5 26.9 39.2] 28.7
115.6 | 87.1 | 116.4| 92.5
74.8 | 55.8 76.1} 58.3
55.0 | 42.3 56.2| 44.3
36.7 | 29.7 37.6] 31.2

Comparison has also been made between the theoretical
results of this method and those obtained by Bryant and
Weiss [1] and Judd et al. [2], over a wide range of e,
W/H, and S/H. Table I shows the comparison for a per-
mittivity of ¢ = 9.6. To facilitate this comparison the
results of Bryant and Weiss for ¢, = 9.0 were scaled to
& = 9.6 by assuming that the impedance varies as
(e + 1)722,

VI. CONCLUSIONS

By using the geometry of a single microstrip line as an
intermediate step, a simple design procedure for coupled
lines has been devised. The synthesis procedure given in
Section III-A requires the application of just three for-
mulas (1) which gives (W/H),, and (W/H),, in terms of
the design even- and odd-mode impedances, (4) which
gives 8/H in terms of (W/H),. and (W/H)., and (2)
which gives W/H in terms of (W/H), and S/H (some
optimization involving (3) may be necessary for problems
involving low dielectric constants).

In the even-mode impedance case the results have been
derived entirely by theoretical means. In the odd-mode

case, attention has been paid to known results to provide
a suitable weighting factor (independent of W/H and
S/H) for a term in the equation.

The comparisons with theoretical results show that
over a wide range of S/H (0.1-2.0) and W/H (0.1-2.0)
the difference between this method and Judd et al. [2]
does not exceed about 12 percent. In the odd-mode case
the difference between this method and Bryant and Weiss
[17] does not exceed about 6 percent, whereas for even
modes their results are as much as 14 percent higher. How-
ever, a comparison between the experimental results of
Napoli and Hughes [8] and Bryant and Weiss [1] also
indicates that (for low wvalues of S/H) the even-mode
results of the latter are high by about 11 percent.

Coupled lines have been made and measured and the
results show good agreement with this method. In obtain-
ing the practical results, the analysis procedure (Section
ITI-B) was used because it is easier to make the coupled
lines and then measure their dimensions. However, the
comparison also serves to check the synthesis procedure '
(Section I1I-A) because both the analysis and synthesis
procedures are based on the same formulas.
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Effect of 2450-MHz Radiation on the Rabbit Eye

ARTHUR W. GUY, seNior MEMBER, IEEE, JAMES C. LIN, MEMBER, IEEE,
PIROSKA O. KRAMAR, axp ASHLEY F. EMERY

Abstract—The cataractogenic effects of near-zone 2450-MHz
radiation in rabbits are presented. The power deposition pattern in-
side the eyes and head of rabbits has been determined using a ther-
mocouple technique. It was found that a peak absorption of 0.92
W /kg occurred between the lens of the eye and the retina for each
milliwatt/square centimeter  incident. Time and power-density
studies indicated a cataractogenic threshold of a 150-mW /cm? in-
cident, or 138-W /kg peak absorption behind the lens for 100 min.
The threshold time decreased with increasing power density. Agree-
ment between in vivo intraocular temperature measurements and
finite-element computer predictions reinforces the suggestion of a
thermal mechanism for microwave-induced lens opacities.

INTRODUCTION

RODUCTION of lens opacification in the eyes of
laboratory animals by exposure to microwave radia-
tion has been known to occur since 1948 [1 -[37]. However,
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the exact conditions under which these changes exhibit
themselves are often subjects of discussion. While it is
generally known [41-[67] that acute exposures to high-
power continuous-wave radiation cause various degrees
of lens opacities at a number of frequencies, there remains
the question of whether chronic exposure to low power
densities or pulsed radiation of low average power is signi-
ficant in the induetion of cataracts. Absorption of miero-
wave energy in the eye and consequent conversion into
heat has been thought of as the principal mechanism
responsible for the cataractogenic effect. However, recent
reports [4],[5] suggested that some factors other than
the thermal one might be responsible. These reports allude
to formation of lens opacities in animals receiving repeated
exposures of microwave radiation at levels believed to
produce insufficient temperature rise. A large portion of
past investigations were chardcterized by lack of quantita- *
tive rigor and produced few results useful for the purpose of
scientific extrapolation to human exposures. It is essential
that quantitative relationships between the physical
variables of microwave radiation and the biological changes
in the eye be determined in order for the animal data to
be of use in predicting safe levels of human exposure.

Extending the concept of quantitative measurement of
the actual fields or absorbed power in the affected tissue
structure relative to the inecident radiation, we have estab-
lished the microwave field and power patterns both inside
and outside the rabbit’s head and eyes by special measure-
ment techniques while the animals were exposed to near-
gone 2450-MHz radiation from a corner reflector (dia-



